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Abstract The phase diagram of a lhree-sIate microemulsion model at low temperatures iS 
discussed. It is shown how. laking into m u n t  low-energy excitations, the ground-state phase 
diagram is modified and the degeneracy of a coexistence line bordering the region of lamellar 
phase is removed. 

1. Introduction 

Three-component mixtures of water, oil and amphiphiles exhibit very interesting behaviour 
as the temperature and concentration of the surfactant are varied. For a microscopic theory of 
these systems several Hamiltonians have been proposed [ 1-61. In a first model, proposed by 
Widom [ 1,2], formulated in terms of king variables, the three species of molecules occupy, 
with some constraints, the bonds of a lattice. More recently, a three-component lattice model 
has been proposed by Schick er al [3,4] in order to illuminate some additional aspects 
of amphiphilic systems, among which are the microemulsion phase and the interfacial 
properties. 

Previous studies [3,4] based on a mean-field theory present an essential first step 
towards understanding the behaviour of the model. However, some features, such as the 
infinite degeneracy of the zero temperature state manifold occurring for some values of the 
amphiphile strength have not been covered by the mean-field approach. 

In this paper we wish to show how one can account for fluctuations beyond the mean- 
field and to study rigorously, whenever it is possible, the phase diagram of the model. 
Namely, we use the standard low-temperature perturbation [7] in order to understand the 
influence of local excitations and to study the phase diagram. 

The model considered is a simple three-component lattice system in dimension d > 3. 
To each site of a cubic lattice Zd is assigned a spin-I variable si so that the values 
si = I ,  -1 ,O correspond to the presence at site i of a molecule of water, oil, or amphiphile, 
respectively. The Hamiltonian is 

~ = = C J ( s i - s j ) 2 + C ( B s i Z - H s i ) +  - s j ) s k .  2 

l i . j l  i ( i , A k )  
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The first term is the sum of pair interactions, assumed to be attractive between particles of 
the same kind (J > 0), and the second one contains the usual chemical potentials. With 
these two terms the Hamiltonian is a particular w e  of the Blume-Emery-Griffiths model 
[8], which describes a simple three-component mixture for the case of nearest neighbour 
interactions. Even though we assume that two particles of different kinds have the same 
pair interactions, the discussion for general pair interactions can be performed by following 
the same method which is used in the present work. The external field H is related to 
the chemical potential difference between oil and water and 5 is related to the chemical 
potential of the surfactant. The third sum extends over the sets ( i .  j ,  k )  of three adjacent sites 
in a line and L 7 0 is the strength of the amphiphilic interaction. This term distinguishes 
the molecule associated with spin 0 as an amphiphile and mimics its effect by favouring 
the configuration with 0 placed between + and -, all in a line. 

2. Phase diagram with low-energy excitations 

The ground states of the model are described as follows. If we assume that L = 0, the 
spins must be equal everywhere since J > 0. The system has three ground states, the (0). 
(+) and (-) states, where respectively si is equal to 0, + I  and - 1  for all i. The energies 
per site in these states are 

h"' = 0 h'+' = B - H h(-' = 5 + H 
and the corresponding phase diagram is easily obtained. 

sites (i, j, k ) .  Such configurations appear in gmund states if 
The amphiphile interaction favours the configuration (+O-) on three aligned adjacent 

and, for this reason, we assume hereafter that this condition is satisfied. Then, at least for 
some values of B and H, it is clear that the system would favour having the L-bonds (or 
the sets of three adjacent sites) occupied as much as possible by such (+O-) configurations. 
This leads to a new family of ground states with a lamellar structure. To describe them more 
precisely we introduce some notation. We consider the planes r( i )  = alii f.. . +a,& = z, 
where all a's are- +I or -1  and z is an integer. These planes will be called diagonal planes, 
they may have 2d-1 possible orientations. We consider the sequence of all diagonal planes 
of the lattice with a given fixed orientation. The configurations that assume a constant value 
in each plane of such a sequence will be called layered configurations. The lamellar ground 
states are the layered configurations obtained by putting all spins equal to 0 on every second 
plane of the sequence and altematively equal to +I and to -1 on the remaining planes. In 
other words, the sequence of spin values on the diagonal planes is the periodic sequence 
(0 + 0 - . . .) of period four. This leads to 4 x.Zd-' = Zdti equivalent (i.e. related by 
translations and rotations of the lattice) lamellar ground states. Their energy per site is 

d I 
2 2 

h""' = --(L - 25)  + -B .  

By comparing this expression with those corresponding to the other ground states we 
obtain the ground state phase diagram shown in figure 1. 
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Figure 1. The ground state phase diagram. 

The lamellar states are the unique ground states, for values of B and H in the triangular 
region 

B 
d d d d 

> L - 2 J + - .  
2 H  _ -  2 H  B - < L - 2 J +  - B 

- < L - 2 J  
d 

Outside this region we have the (+) state, if H > 0 and H > B; the (-) state, if H < 0 
and H < B;  and the (0) state, if I H I < B .  

We next examine the coexistence lines of the phase diagram. On the separation line 
between the (0) and (lam) states, only these two states are ground states. The same situation 
occurs on the coexistence lines (O)/(+). (O)/(-) and (+)/(-). However, on the coexistence 
lines (+)/(lam) and (-)/(lam) infinitely many ground states occur. All of them have a 
layered structure and may be described by the sequence of spin values associated with the 
sequence of parallel diagonal planes. A particular role will be played by the periodic ground 
states associated with the periodic sequences (O+. . .+O- . . . -), in which m > 1 diagonal 
planes, where the spins are +, are separated from n > 1 diagonal planes, where the spins 
are -, by single planes, where the spins are 0. We use the notation (m, n )  for these states 
of period p = m + n + 2. The periodic state (1,l) is the (lam) ground state considered 
above. The energy per site of these states is 

( L  - 2 5 )  - h"'"' - I + )  - 2d - - h  
P 

This shows that all ground states with (m. n = I), and (m = I ,  n). are present, respectively, 
on the coexistence lines (+)/(lam) and (-)/(lam). All these states, for any m and n, are 
present at the triple point, where these two lines and the (+)/(-) coexistence line intersect. 

Our aim is to show that the model considered, in the region L-2J > 0, can be rigorously 
analysed at low temperatures. The phase diagram at low temperatures follows from a 
competition between energies of ground states taking into account additional contributions 
of entropies of lowenergy excitations. These ideas are formalized in the. PirogovSinaY 
theory of low-temperature phase diagrams [7]. Here we will use an extension of this theory 
due to Bricmont and Slawny [9]. 

This extension concerns a mechanism of suppression of high-energy fluctuations. We 
first introduce same notions needed for the study of equilibrium states at low temperatures. 
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By an excitation we understand a configuration which coincides with a ground state outside 
of a finite set of sites. If, in a given system, the energy of an excitation (relative to the 
corresponding ground state) tends to infinity with the size of the region where it differs from 
the sunounding ground state, this system is said to be regulart. The Peierls condition, 
required in the Pirogov-Sinai’ theory is satisfied in a given system, if the energy of an 
excitation is proportional to the size of the boundary of this region (or larger). Clearly, 
all models in which the Peierls condition holds are regular. The method of Bricmont and 
Slawny applies to a more general class of regular systems than those satisfying the Peierls 
condition. We shall show that this is the case for the model under consideration which is 
regular but has an infinite number of ground states and fails to satisfy the Peierls condition. 
The two-dimensional version of the model is not even regular, a lack of regularity which 
also occurs in the one-dimensional Ising model. 

It is useful to consider the excitations as partial or local configurations on the lattice, 
consisting ofthe set of excited sites, i.e. those which contribute to the increase of the energy 
with respect to that of the ground state, and an appropriate boundary around this set. The 
precise definitions are as follows. We define a partial Configuration X by specifying a finite 
set of sites, called the domain of X, dom(X), together with a configuration on this set. 
We define a subset of dom(X) called the boundary of X. a(X), in such a way that if the 
configuration on a(X) is kept fixed, the sites in dom(X) \ a(X) do not interact with the 
sites outside of dom(X). A standard way is to define a(X) as an [-boundary, with e 2 2, 
i.e. as the set of sites in dom(X) at distance less than E from its complementary set. A 
partial configuration X is an emifation if its restriction to a(X) is a ground configuration 
on a(x). 

We next present some simple examples assuming only one excited site in the ground 
state. We add to this excited site a boundary consisting of its nearest neighbours and also 
the next-nearest neighbours on the same line when the excited site interacts (by an L-bond) 
with them. We get, for instance the following partial configurations (actually there are, up 
to translations and rotations of the lattice, fourteen possibilities for such onesite excitations) 

+ + - 0 0 
- o o +  + o o -  - 0 0 0 -  + O O O +  

0 0 0 0 
+ 

- 

- + - 

XI x3 x4 

Although only two dimensions are shown here, our intention is to represent d-dimensional 
objects that can easily be understood from the figures, taking into account the layered 
structure of ground configurations. 

We observe that all these excitations have the property of being removable: an excitation 
X is removable if there exists a unique ground configuration on dom(X) denoted G(X), 
whose restriction to a(X) is equal to the restriction of X. If X is a removable excitation, 
then its energy E(X), relative to the ground state. is well defined. It is the energy of the 
configuration X minus the energy of C(X). If X is a removable excitation and Y a partial 
configuration whose domain contains dom(X) and such that its restriction to dom(X) is 
equal to X ,  then there is a unique partial configuration obtained by removing X from Y, 

t Noticc, however, tM M excilation may consists of a region where the configuration is a ground stale, but 
diffennt @om lhat s w u n d i n p  the region from outside. 
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equal to G(X) on dom(X) and to Y otherwise. The ground configurations Gk = G(Xa),  
k = 1, , . . ,4, associated with the excitations considered above, are the following ones 

+ 
t - 0 0 

- O f +  + o - -  - o + o -  + o - o +  
0 0 0 0 

+ 
G I  G2 G3 G4 

- 

- + - 

and the energies EI = E(Xk) ,  k = I , .  . . ,4, of the excitations are 

E l = - B + H + d L  

E,  = - B  + H + 2 d L  - 2 d J  

E2 = -B  - H f d L  

E4 = -B - H f 2 d L  -265. 

Since d L  - 2 d J  t 0, we have El < E3 and E2 < E4. Moreover, when we consider 
the system in the vicinity of &e (+)/(lam) or the (-)/(lam) coexistence lines of the phase 
diagram of the ground states, only the elementary excitations XI.. . . . X4, have energy less 
or equal than E = max(E3, E4]. This occurs at least for some range of values of the 
coupling constants (namely, if L < (8/3) J ) to which, for concreteness, we shall restrict 
our discussion. 

If X is a configuration of the system .equal to a ground configuration C outside A, 
where A is a large box on the lattice, then there is a uniquely defined configuration called 
the refouch of X, ret(X), obtained from X by removing all elementary excitations with 
energy smaller than a given value Eo (i.e. in the case considered above, Eo = E ,  all 
excitations of types XI,. . . , X4). Let E(G, Eo) be the set of such configurations X which, 
moreover, satisfy the condition ret(X) = G. Namely, it is the set consisting of the ground 
configuration G and all its excitations whose energy locally does not exceed EO. We assign 
to evely configuration in E(G, Eo) the corresponding Boltzmann weight and suppress the 
remaining ones by assigning them zero probability. In this way we obtain a state of the 
system (in the box A), which will be called the resfricfea' ensemble associated with the 
ground state C (with excitations of energy less than Eo). The partition function Z z ) E n ,  
restricted to the configurations of the set E(G, Eo), yields the free energy per site associated 
with this restricted ensemble f,"."' = -(1/,C11A1)InZ2Eo (in this formula ,9 = l / k T  
denotes the inverse temperature and IAl is the volume of A). This notion extends to the 
infinite system by taking the limit A tending to infinity. 

The excitations Y, contributing to a restricted ensemble, have weights p(Y) = 
exp(-pE(Y)). Two excitations are compatible if their domains are disjoint. These facts 
imply that 

where WG) is the energy of the ground state G and the sum runs over all sets (PI,. . . , Yk), 
(k  = 0, I ,  2,. . .) of compatible excitations of G with energy less than EO. Therefore, the 
restricted ensemble can equivalently be described as a polymer system, where the polymers 
are the different excitations with the activities p(Y). Since the system is regular and 
E ( Y )  4 Eo, the number of kinds of these polymers, up to translations, is finite (independent 
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Figure 2. The skelch of the phase diagram with contributions of Ihe lowesl energy excitalions 
laken into account 

of A). The activities p(Y) are small when the temperature is low. We use the convergent 
small activity expansion (in terms of the Ursell functions) to compute the free energy of 
the restricted ensemble. Since different ground states may have different excitations, and 
also different numbers of common excitations, the free energies of some of the associated 
restricted ensembles will be different. 

Let us consider the case Eo = E c m a (  Es, E4] in which all the excitations to be taken 
into account are of types X I ,  . . . , X4 described above. We use f ( m ~ n l ~ E ,  or simply f tm."' ,  
to denote the corresponding free energy per site when G = (m, n) is one of the periodic 
ground states of the system. In this case, up to terms of order less than exp(-pE), the 
low-temperature expansion can be limited to the first term for each excitation considered, 
that is 

f1m.n' = h(m,nI - 1' Lm W B l ~ l ) ~ v ( Y )  
Y A+CO 

where h'"'."' is the ground state energy per site and the sum runs over the four types of 
excitations considered contained in A and contributing to the restricted ensemble E(G, E) 
of the ground state G = (m,n) .  Taking into account the geometric structure of these 
grounds states, described above, we find 

2 1 1 

P P P 
-- I ( n  >Z)(oz--  I ( m  = 1 ) ~  -- I ( n  = 1)p4. 

In this formula, the first four terms correspond to the energy per site of the ground state, 
= (1/B) exp(-pEt) for 4 = I , .  . . ,4, and I is the indicator of the condition shown in 

parentheses (it equals one if the condition is satisfid and is zero otherwise). On the other 
band, for G equal to the (+) and (-) states, we have f'+' = h'+' and f(-] = h(-' (there 
are no excitations of these ground states of energies lower than E). 

Having the free energies, we may draw the phase diagram for the restricted ensembles. 
We say that a point in the ( E ,  H)-plane belongs to the G-state region whenever 

f 7 . E  ( E ,  H) = f C S E ( E ,  H) - min f C . E ( E ,  H) = 0. 
G 

This phase diagram is schematically represented in figure 2. 
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The region P Q R R ’ Q P  around the point B = -d(L -25) .  H = 0, is occupied by the 
restricted ensemble (2,2). For H 2 0 this region is defined by the inequalities 

H - $(dL - 2 d J f  B )  < &+ $9, 
H + $(dL - 2 d J  + B )  < :%- 39,  I - 9 4  

d L  - 2 d J  + B < 2% + 2 p l -  i ~ d .  

The restricted ensemble (51) is present in the triangular region Q R S ,  limited by the curve 
Q R  already described and the two C U N ~ S  QS and R S ,  where 

-%I + &4 < H - i ( d L  - 2 d J  + B )  < $91 + f ~ 4 .  

Since the two bounds are inconsistent for low temperatures and E4 c E, ,  the region (2.1) 
ends at a point S, near to the point B = 0, H = (d/2)(L - 25) .  The curve SW, where 

H - i ( d L  - 2 d J  + B) = 4Q4 

separates, together with the regions above, the (e) and (1,l) restricted ensembles. The lower 
part (H < 0) of the diagram follows by the symmetry with respect to the horizontal axis. 

In the phase diagram of figure 2, the distance between the nearest curves is of order 
exp(-pE). If this order were considered to be negligible, we would only observe the region 
corresponding to the (2.2) restricted ensemble whose size is of order exp(-,SEzy. At lower 
orders the phase diagram reduces to that for the ground states. On the other hand, the 
restricted ensembles (m,  n )  associated with the other periodic ground states belong to the 
coexistence curves P Q S  and P Q S ’  in figure 2. More precisely, all restricted ensembles 
with m 2 3 and n = 1 coexist on the curve Q S ,  for m 2 3 and n = 2 they coexist on the 
curve P Q ,  and all states with m > 3 and n 2 3 coexist at the point P. 

3. Conclusions 

The discussion presented above can be transformed into a rigorous statement about a full 
phase diagram (of the model with no restrictions on excitations) at low tempxatures. 
Namely, one can show that there exists b. such that for all temperatures > BO. there 
exists, in the plane (H, B) ,  an open region a(,!?) in the complement of the curves P QS 
and PQS’ of the phase diagram of the restricted ensembles (figure 2), whose distance from 
these curves is of order less than exp(-pE). In a(B) we have a complete phase diagram 
of the pure thermodynamic phases (extrema1 periodic Gibbs states of the system) which is 
a small deformation of the diagram of figure 2. 

that correspond to the regions denoted (+),(-) and (m,n )  with m < 2 and n < 2, in 
figure 2. In each of these regions there is a pure phase which is a small deformation of the 
associated ground state described above. The boundaries of these regions are smooth open 
arcs in which two distinct phases coexist. They meet, inside Q(p) ,  at two points (which 
correspond to the points R and R’ of figure 2) in which three distinct pure phases coexist. 
These coexistence curves are deformations of the corresponding curves in figure 2 of order 
exp(-BE). 

There are in a(@), six disjoint open regions, such that their closure jointly covers 
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Moreover, the analysis developed in the present paper can be pursued by considering 
subsequent excitations of higher energies. This allows us to remove the degeneracy from 
the line P QS and obtain a rigomus full description of the phase diagram. in a corresponding 
region, of the system at low temperatures. This is in fact the main result of our work, which 
we are going to report only briefly in the following paragraphs (a more detailed discussion 
will be the subject of a separate publication). 

First, we prove that, with appropriate definitions of the associated domains and 
boundaries, and for any E, all elementary excitations with energy less than E are removable. 
This allows us to consider restricted ensembles in which all these excitations are taken into 
account. We may then compute their free energy and, by using the function H) 
as explained above, draw the corresponding phase diagram of the restricted ensembles. On 
the other hand, we prove that for any given integer k, there is a value E = El  (which 
increases linearly with k), such that if all the e lemenw excitations with energy less than 
Ek are considered, then a phase diagram may be drawn that distinguishes all the regions 
belonging to the restricted ensembles associated with the ground states (m,  n )  for all m 
and n such that m a l m ,  n) < k. Then, as in the case of the lowest energy excitations that 
we have already discussed in some detail, these results lead to a rigorous statement on the 
equilibrium states of the system at low temperatures. Namely, one can show that there 
exists & = &(k) (where &(k) -+ 05 when k + m) such that for all temperatures fi  > Bo. 
there exists in the plane ( H .  E )  an open region Sl(p),  in which we have a complete phase 
diagram of the pure thermodynamic phases, with separated regions for for all pure phases 
(m. n )  for which max[m, n) < k. This phase diagram is a small deformation of the diagram 
of the associated restricted ensembles. 

Figure 3. The sketch of a pan of lhe phase d m  at low tempemures. 

A sketch of the phase diagram is shown in figure 3. One finds that the phases are 
ordered according to increasing values of (m + n ) / p  when B increases along lines parallel 
to the B axis while, going along lines parallel to the H axis, the values of (m - n ) / p  
increase when H increases. A first-order phase transition takes place when crossing the 
lines of coexistence which correspond to a discontinuity of one of the order parameters (s f )  
or (si). Notice that, as we mentioned above, when k becomes large, the inverse temperature 
Bo, needed to ensure the existence of the state (m, n) as a separate phase, also becomes 
larger. 

Some similarities between the behaviour of the model considered here and the behaviour 
of the axial next-nearest-neighbour Ising (ANNNI) model should be clear (see [lo, 111). 
However, the phase diagram that we were discussing above, is generated in the plane of 



A spin-1 lattice model of m'croemulsions 5293 

the surfactant, oil and water chemical potentials, with all interactions fixed. It yields a 
double infinite sequence of pure phases indexed by the values of m and n. We notice that a 
rigorous analysis of the model proposed by Widom [1,2] has been recently worked out by 
Dinaburg and Maze1 [12] along lines similar to those developed in our work. They found, 
in the region that they were able to study, no ANNNI-like behaviour in that model, contrary 
to what was surmised in some earlier works (quoted in [IZ]). In this case, from infinitely 
many ground states, only a small number of pure phases persist at non-zero temperatures. 

The surface tension behaves quite differently in systems with a finite and with an infinite 
number of ground states. In our case we find that the surface tension goes exponentially 
to zero as fl  tends to infinity. This is easy to understand: an interface between two phases 
does not cost any energy, but it costs the free energy of low-energy excitations. This is, 
actually, the basic mechanism that justifies the method used in this paper. Since the free 
energy of these excitations is exponentially small at low temperatures, the same is true for 
the surface tension. 

Finally, the low surface tension between the oil-rich and water-rich phases, at a given 
temperature, also reflects the low free. energy of the corresponding interface. In fact, since 
the excitations that distinguish between @e ground states (m, n) and (m - 1, n) have 
energy proportional to k = max{m,n], their free energy decays exponentially when k 
becomes large. Therefore, the surface tension between the phases (m, n) and (m - 1, n) is 
exponentially small for large k. 
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